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Abstract 
 
The seafloor contains complex ecosystems where habitat heterogeneity influences 

biodiversity. Natural biological and geological features including vents, seeps and reefs 

create habitats that select for distinct populations of micro- and macrofauna. While 

largely studied for macrobiological diversity, built habitats may also select distinct 

microbiomes. Built habitat density on the seafloor is increasing with ocean sprawl 

expanding in the continental shelf and slope, potentially having widespread effects on 

benthic communities. This study addresses one type of built habitat, shipwrecks, on 

microbiomes in surrounding sediment. Using deep-sea sediment samples (762 total) 

from the Gulf of Mexico, we report elevated diversity and a predictable core microbiome 

around 9 shipwrecks. We show the sphere of influence of built habitats extends up to 

300 m onto the seafloor. Supervised learning made predictions of sample proximity to 

structures based on frequency of taxa. Strongest predictions occurred in sediments 

nearest and furthest from sites for archaea and mid-transect for bacteria. The response 

of archaea to built habitats was consistent across sites, while bacteria showed greater 

between site variability. The archaeal core shipwreck microbiome was enriched in taxa 

(e.g. Bathyarchaeia, Lokiarchaeia, Thermoplasmata) not present in the surrounding 

seafloor. Shipwrecks shaped microbiomes in expected ways, providing insight on how 

built habitats impact microbiome biodiversity in the Anthropocene. 

 
Introduction 

The seafloor of the ocean is the largest continuous ecosystem on Earth and the most 

uncharted one, with less than 20% of seabed mapped (Levin et al., 2019). The seafloor 

is also a complex ecosystem where habitat heterogeneity is thought to be a major factor 
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influencing biodiversity (Zeppilli et al., 2016). Habitat heterogeneity allows for more 

species to co-exist in a specific area thus contributing to species diversity, richness, and 

a greater number of ecological niches (Zeppilli et al., 2019). Biodiversity in the deep sea 

is positively linked with ecosystem functioning, suggesting that heterogeneity influences 

ecosystem processes (Zeppilli et al., 2019). Contemporary advances in high-resolution 

bathymetry report an abundance of hydrothermal vents, cold seeps, gas hydrates, 

seamounts, canyons, and smaller habitat features contributing to a heterogeneous 

landscape (Danovaro et al., 2014). Some of these features, specifically, hydrothermal 

vents and seeps, create environments that are physically and chemically dissimilar from 

the surrounding seabed where poly-extremes of temperature and chemical gradients 

select for specialized populations of micro and macrofauna (Orcutt et al., 2011). 

Widespread hydrothermal vents and methane seeps are considered hotspots of 

biodiversity that harbor genetically distinct and biogeochemically relevant microbiomes 

(Dick et al., 2019; Dombrowski., 2018; Ruff et al., 2015;). Organic falls, like whale 

carcasses and wood falls, are also habitat features that create atypical environments 

attracting diverse microbial life (Bienhold et al., 2013; Goffredi & Orphan, 2010). Recent 

study suggests that even abyssal plains, once considered uniform in composition, are 

composed of heterogenous rock patches that harbor nuclei of biodiversity (Riehl et al., 

2020). These natural features have received substantial study for their importance as 

habitats that maintain deep sea diversity and function.  

 

The mosaic of modern and historic built habitats (human made structures) on the ocean 

floor may play substantial roles in shaping and maintaining biodiversity, composition, 



 4 

and function. These environments differ from the surrounding seabed, provide hard 

substrate for colonization, have high relief, increasing benthic and pelagic connectivity, 

and transform into artificial reefs. For decades, artificial reefs have been considered a 

beneficial surrogate to natural habitats, especially in mesophotic areas lacking hard 

bottom (Firth et al., 2016; Sammarco et al., 2004). Decommissioned oil rigs and 

platforms have been resourced as artificial reefs through government programs 

including the “Rigs to Reefs” in the United States (Macreadie et al., 2011). Biofouling 

and reef development on artificial hard surfaces is reported to have positive effects on 

biodiversity of regional fish stocks and can pose as physical barriers to illegal trawling 

practices (Firth et al., 2016; Walker et al., 2007). However, there is also debate 

regarding habitat value vs. habitat harm to marine macrofauna, especially where 

invasive species are concerned (Sammarco et al., 2004) and whether artificial reefs are 

“stepping-stones” for native or invasive species (Schulze et al., 2020). Artificial reefs 

could also promote high densities of native but habitat-limited species like benthic toxin 

producing dinoflagellates.  

 

Shipwrecks transform into artificial reefs and have been long regarded as a positive 

influence on macrobiological biodiversity (Walker et al., 2007). While not as numerous 

as the built features associated with energy infrastructure, in the Gulf of Mexico and 

Baltic Sea, for example, there are over 2,000 and 100,000 known shipwrecks 

respectively (Björdal, 2012; Damour et al., 2015). The United Nations Educational, 

Scientific, and Cultural Organization (UNESCO) estimates over three million shipwrecks 

on the global sea floor (Koutsi and Stratigea, 2021; UNESCO, 2008). Along with 
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providing hard substrate, it is important to note some shipwrecks pose acute 

environmental hazards when they contain sunken munition, chemical agents, toxic 

chemicals and fuel that could leak into the surrounding seabed and water column (Czub 

et al., 2018). 

 

While artificial reefs have been studied for their influence on macrobiological 

communities, they have largely been overlooked in microbial ecological studies. Two 

recent works highlighted a positive correlation between microbiome diversity and 

proximity to historic shipwrecks (Hamdan et al., 2018, 2021). A case study of a historic 

metal-hulled shipwreck revealed shipwrecks function as island-like systems for bacterial 

microbiomes (Hamdan et al., 2021). These works indicate shipwrecks shape microbial 

biogeography with their influence radiating from structure into the surrounding seafloor. 

The implication of these works is that built features function as catalysts of change for 

invisible diversity.  

 

The pace of change for seafloor biodiversity may accelerate with the rising number of 

built features introduced into the seafloor as a consequence of the “ocean sprawl”, that 

is, the progressive addition of human made structures in the marine environment 

(Bishop et al., 2017; Duarte et al., 2013). Built features associated with fossil and 

renewable energy infrastructure are ubiquitous in some areas. For example, 60% of the 

world’s active offshore energy platforms are currently located in the Gulf of Mexico (Firth 

et al., 2016). By 2028, the amount of energy and aquaculture infrastructure on the 

ocean seafloor is expected to increase 50-70% (Bugnot et al., 2021). In addition to 
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energy infrastructure, shipwrecks, airplane wrecks, and space debris may also alter 

benthic communities in terms of composition, diversity and organismal abundance. This 

is the case from nearshore environments to the deepest areas on the global seabed 

(Amon et al., 2020).  

 

Given the disconnect between the number of built habitats on the seafloor and 

biodiversity studies of the seabed surrounding them, the sphere of influence of built 

features on ecosystem dynamics is poorly understood. The response of microbial 

communities to built habitats is of particular interest, since microorganisms are the 

primary colonizers of introduced substrates, enabling them to become artificial reefs, 

and drive biogeochemical cycling (i.e., carbon, nitrogen, silica, trace metals) in all 

marine habitats (Svane & Petersen, 2001). Thus, the goals of this study were to 

address how historic deep-sea shipwrecks of different size, age and hull type (wood and 

metal) 1) shape microbiome composition in the surrounding seabed, and 2) determine if 

microbiomes respond to built features in stochastic or predictable ways to provide 

context for their potential as drivers of seabed biodiversity.  

 

Materials and Methods 

Sediment cores were collected during eight offshore expeditions spanning 2014–2019 

aboard research vessels Point Sur (PS) and Pelican (PE) (Table S1). Samples from 

cruises PE15-22 (March 2014), PE16-23 (May 2016), PS17-26 (June 2017), and PS18-

27 (June 2018) were collected using a MC800 deep-sea multi-corer (Ocean 

Instruments) fitted with a Tracklink Ultra-short baseline (USBL) transponder to provide 

positional information relative to shipwrecks. Samples from cruises PE14-15 (March 
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2014), PE15-02 (July 2014), PS19-06 (September 2018), and PS19-24 (June 2019) 

were collected using ROV Global Explorer (Oceaneering) and Odysseus (Pelagic 

Research Services) with Jason-style push cores. The shipwrecks in this study range in 

depth between 144 m (Halo) and 1950 m (Alcoa Puritan; Table S1; Fig.1).  

Samples were collected and analyzed as previously described (Hamdan et al., 2018, 

2021). Briefly, genomic DNA from sediment was extracted with the FastDNA SPIN kit 

(MP Biomedical Inc.). PCR gene amplification and sequencing was performed at the 

Integrated Microbiome Resource (IMR) facility at Dalhousie University (Halifax, Nova 

Scotia, Canada). Specifically, samples were analyzed on a MiSeq platform (Illumina) 

generating 300 bp paired-end sequences. The sequencing protocol involved PCR 

controls (4 per 380 samples), although the extraction protocol did not include kit blanks. 

Sequencing blanks were included for each individual Miseq run to help address 

background contamination. The primer sets B969F/BA1406R and A956F/A1401R  were 

used respectively to target V6–V8 variable regions of the bacterial and archaeal 16S 

rRNA gene (Comeau et al., 2011).  

 

Analysis of 16S rRNA amplicon sequences for archaea and bacteria was conducted 

using Quantitative Insights into Microbial Ecology 2 (QIIME2; Bolyen et al., 2019). 

Sequences were trimmed, denoised, and quality controlled with DADA2 (Callahan et al., 

2016) for paired-end sequences at default settings with the exception of max number of 

expected errors set to 4. Taxonomic assignment on produced amplicon sequence 

variants (ASVs) was done using the trained classifier (q2-feature-classifier; Bokulich et 

al., 2018) with extracted reads from SILVA 132 reference database (Quast et al., 2013) 
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and Vsearch classification (Rognes et al., 2016) at 99%. Alpha diversity metrics were 

determined using the core-metrics plugin. Core microbiome at each shipwreck and each 

distance group as well as all shipwrecks and distance groups were determined with the 

feature-table core-features plugin.  

 

PRIMER (v. 7) with PERMANOVA+ was used for statistical analysis of microbiome 

composition. Bray–Curtis dissimilarities were calculated from archaeal and bacterial 

ASV abundance tables. A permutational analysis of variance (PERMANOVA) was used 

to rule out sampling date and sampling device as confounders in this dataset (not 

shown). Subsequently PERMANOVA was used to identify differences in community 

composition with distance, sediment depth, water depth, and hull type. PERMANOVA 

used Type III (sequential) sum of squares and 9999 permutations. Diversity–extinction 

plots were created from ASV tables. 

 

Distance decay of community similarity relationships were visualized through distance 

decay curves (DDC) to display how community similarity varies with geographic 

distance between samples (Zinger et al., 2014). DDCs were constructed for the 

bacterial and archaeal datasets separately in RStudio (Version 2022.02.1) using the 

methods described in Zinger et al. (2014) with the R packages vegan (Version 2.5-7; 

Oksanen et al., 2017), ggplot2 (Version 3.3.5; Wickham, 2016), and ggpubr (Version 

0.4.0; Kassambara, 2018). Bray-Curtis dissimilarity matrices were constructed for whole 

community ASV tables. In the matrices, 0.01 was added to each value to avoid 

calculating infinity values during log transformation. The Euclidean distance matrices 



 9 

were constructed on distance of samples from shipwrecks (m). Both distance matrices 

were log transformed using natural log. A linear regression of log-transformed Bray-

Curtis dissimilarities against the log-transformed Euclidean distance matrix was 

performed.  

 

The QIIME2 q2-sample-classifier was used to make machine learning predictions of 

sample metadata variables from ASV tables. This analysis supported the goal of 

determining if microbiomes respond predictably to built features. The supervised 

learning tool splits input into training and test data sets. The fraction of input samples to 

include in the test set was set 0.2. The test set was excluded from training, but used in 

model validation (Bokulich et al., 2018). The training set trained and tested the estimator 

using a stratified k-fold cross-validation scheme. The random forest regressor predicted 

numerical variables including distance, water depth, and sediment depth from ASV 

feature tables with p-optimize-feature-selection parameter. The regressor model 

generated model summary and accuracy scatterplot showing predicted vs. true values 

for test sample. The random forest classifier was used to predict proximity of samples to 

shipwrecks from ASV tables. Receiver operating characteristic curves, area under the 

curve (AUC) analysis (calculated using scikit-learn) and confusion matrices 

summarizing the performance of the algorithm were generated as part of the pipeline. 

Abundance heatmaps of ASVs driving predictions in distance groups were generated 

with the qiime sample-classifier heatmap function. Data were visualized using ggplot2 

(Version 3.3.3; Wickham, 2016) in RStudio (Version 1.4.1106) and Surfer (version 21, 

Golden Software) was used to create depth–distance diversity plots.  
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Sequences for Anona (2015–2018) and Alcoa Puritan are provided under NCBI 

Bioproject Number PRJNA612314. Sequences for Halo, Viosca Knoll, Ewing Bank, 

Mica, Mardi Gras, and 2014 samples for Anona are found under NCBI Bioproject 

Number PRJNA401282. Sequences for 15711 and 15470 shipwrecks are available 

under NCBI Bioproject Number PRJNA599410. 

 

Results 

Analysis of bacterial and archaeal 16S rRNA genes was conducted on sediments 

collected on single or multiple radial transects surrounding 9 shipwrecks in the Gulf of 

Mexico (Fig 1). The details of each shipwreck and the sampling design are described in 

Table S1. Field work generated sediment samples from distances of 2 – 1000 m away 

from shipwrecks, and from depths of 0 – 20 cm below the seafloor (cmbsf). This yielded 

extracted DNA from 666 and 788 archaeal and bacterial samples respectively, and 

produced ~27 million sequences for each domain. The smaller archaeal dataset is due 

to fewer analyses at one site, Anona, and no archaeal samples at Alcoa Puritan. Post 

quality control reads resulted in 41,752 amplicon sequence variants (ASVs) for archaea 

and 191,338 ASVs for bacteria. Low frequency reads were filtered and 650 samples for 

archaeal analysis and 762 for bacteria remained.  

 

PERMANOVA revealed microbiome structure for both domains was primarily shaped by 

water depth (Table S2). Distance from the 9 shipwrecks for both archaea (Pseudo-F 

12.4; p < 0.001) and bacteria (Pseudo-F 3.05; p < 0.001) (Table S2) significantly 

influenced microbiome composition, along with sediment depth, and hull type.   
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Alpha diversity of archaea and bacteria was significantly influenced by distance from the 

shipwrecks (Kruskal-Wallis; p < 0.001). Regression analysis of archaeal Shannon Index 

(Shannon, 1948) against distance showed a significant positive relationship between 

diversity and shipwreck proximity (Fig. 2a; R2 = 0.42; p < 0.001). Bacterial diversity also 

increased with proximity to shipwrecks (p < 0.0001) although the relationship was not as 

strong (Fig. 2b; R2 = 0.13; p < 0.001). A spatial analysis was generated to visualize the 

changes in alpha diversity with distance and sediment depth using data from all sites 

combined (Fig. 2c) and at each site individually (Fig. S1). Archaeal Shannon Index for 

all sites was highest near the shipwrecks and elevated in all depths. An area of elevated 

diversity extended up to 200 m away from all shipwrecks (Fig. 2c). This trend was 

observed at each site individually (Fig. S1) and the highest overall diversity was 

observed at the shipwreck Halo, a 436’ long, steel-hulled wreck that rests in ~144m 

water depth, and at two 19th-century, wooden-hulled shipwrecks known as sites 15711 

and 15470 resting in 525 m and 1800 m water depth respectively. Notably, the transects 

at sites 15711 and 15470 extended only 60 m into the surrounding seabed. Spatial 

analysis for bacterial Shannon Index showed similar results, with elevated diversity 

extending ~250 m from the shipwrecks at all sediment depths (Fig. 2c). At individual 

sites, the diversity – distance trend was not as consistent for bacteria as for archaea.  

For example, diversity at Ewing Bank increased throughout the entire transect (Fig S2).  

Similarly to alpha diversity, community similarity also decreased with increasing 

geographic distance. The DDC for bacteria showed slight decrease in microbial 

community similarity with increasing geographic distance, and the slope of the 

regression was significant (p < 0.05; Fig S3a). The DDC for archaea also showed 
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decreasing microbial community similarity with increasing geographic distance and the 

slope of the regression was more significant than for bacteria (p < 0.001; Fig S3b).  

 

Core microbiome analysis is a tool to identify taxa consistently observed in certain 

habitats (Shade & Handelsman, 2012). Members of the core microbiome are often 

considered critical to habitat function. Membership in the core microbiome for archaea 

and bacteria was based on presence in 80% of samples in groups binned by distance 

range from the shipwrecks. The analysis on archaeal ASVs revealed changes in core 

community composition with distance from the shipwrecks (Fig 3a). The number of 

members of the core community was higher within 150 m from the shipwrecks (n = 13), 

and a wide range of phylotypes were observed. Crenarchaeota class Bathyarchaeia, 

Asgardaeota, Lokiarchaeia, and various members of Euryarchaeota Thermoplasmata 

were all detected in the archaeal core microbiome up to 150 m and disappeared at 

greater distances. Beyond 200 m the only core members belonged to Thaumarchaeota 

(n = 2). These patterns were evident when each shipwreck was analyzed individually 

(Fig. S4).  

 

The core microbiome for bacteria also changed as a function of distance (Fig 3b). The 

diversity of bacterial core members was greatest at 2-9m from the sites with highest 

number of core members (n=26) and decreased beyond 200 m. At 500 and 1000 m the 

bacterial core consisted of only 7 taxa. Certain core phylotypes from the Acidobacteria, 

Bacteroidetes, Dependetiae, Latescibacteria Marinimicrobia, Nitrospirae, and 

Zixibacteria were present only in samples in nearest proximity to the shipwrecks. The 
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core also included cosmopolitan bacteria present at all distances affiliated with the 

Alpha-, Delta-, and Gammaproteobacteria (Fig 3b). The analysis for each shipwreck 

revealed a decline in core membership with distance from the sites, cosmopolitan 

members, and unlike the archaea, members specific to individual sites (Fig S5).  

 

Machine learning can aid in studying microbial communities and their relationship to the 

surrounding environment. Here, supervised learning predicted numerical and 

categorical sample metadata values as a function of microbiome composition. The 

random forest regressor tool predicted sample distance from the shipwrecks, sediment 

depth and water depth based on frequency of ASVs. The most accurate predictions for 

archaea and bacteria were water depth and sediment depth (Table S3). Archaeal ASVs 

predicted proximity to shipwrecks more strongly (r2 = 0.29, p < 0.001) than bacterial 

ASVs (r2 = 0.05, p = 0.007; Table S3). To explore which ASVs were driving distance 

predictions in each distance group, we used the random forest classifier. The classifier 

indicates high predictive accuracy for archaea (macro-average area under the curve 

(AUC) = 0.85) and bacteria (macro-average AUC = 0.82) (Figs S6 and S7). The 

distance groups that were best predicted from archaeal ASVs were closest to (2-9m; 

AUC = 0.95 and the furthest from (1000m; AUC = 0.94; Fig S6a) the sites. For bacteria, 

300 m (AUC = 0.91) and 1000 m group (AUC = 0.90) was best predicted from bacterial 

ASVs (Fig. S7a) while the closest distance group had a moderately high prediction 

(AUC = 0.79). Lastly, both archaeal and bacterial ASVs showed a strong prediction for 
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hull type (construction material) in with macro-average AUC = 0.98 for archaea (Fig. 

S6b) and macro-average AUC = 0.99 for bacteria (Fig. S7b). 

 

Candidatus Nitrosopumilus was a strong predictor for every distance group (Fig 4a). 

Closest to shipwrecks (2-9m group) ASVs from uncultured Bathyarchaeia and 

Lokiarchaeia were the most important features driving the prediction. From 2 to 200 m, 

ASVs from Asgardaeota, Cranarchaeota, and Euryarchaeota were all considered 

important features in this model. We observed ASVs that were only considered strong 

predictors at distances from the shipwrecks within 200-300 m. These included 

Nanoarchaeota; Woesarchaeia and DSEG, Euryarchaeota; Methanomicrobia and 

Thermoplasmata; Candidatus Nitrososphaera from Thaumarchaeota, Nanoarchaeota; 

Nanohaloarchaeia, Hadesarchaeota, and Hydrothermaeota (Fig. 4a). The observed 

enrichment of important ASVs predicting proximity to shipwrecks between 2 and 200 m 

is consistent with the results obtained from the core microbiome analysis.  

 

Bacterial ASVs strongly predicting close proximity to shipwrecks included those 

affiliated with Alphaproteobacteria; Rhodovibrionales; Kloniellacaea, 

Gammaproteobacteria; Sterodobacterales; Woeseiacaea, Bacteroidetes; Cytophagales, 

and Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae. ASVs from the 

Deltaproteobacteria, including NB1-j taxa were important features in all distance groups. 

This result was consistent with the core microbiome analysis.  Like archaea, there were 

more important bacterial ASVs predicting proximity to shipwrecks in distance groups 

spanning 2 to 150 m away from the sites. The observed importance of Chlamydiae, 
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Chloroflexi; Dehalococcoidia, Dependentiae; Babeliae, and Bacteroidetes; 

Ignavibacteria decreased after 150 m.  

   

Discussion  

The goal of this study was to understand how built features shape biodiversity in the 

surrounding environment and determine if benthic microbiomes respond to built habitats 

in predictable ways. Predictable, in this study means alpha diversity declines as a 

function of distance from the sites, as was observed in a prior case study for bacteria 

(Hamdan et al., 2021) and that ASVs are routinely associated with features. This 

information can inform on the impacts of ‘ocean sprawl’ (Bugnot et al., 2021; Duarte et 

al., 2013) in shelf and slope environments, a topic of particular importance in the Gulf of 

Mexico, given the abundance of operational built habitats and extant shipwrecks and 

decommissioned oil rigs on the shelf and slope. Using shipwrecks as model island-like 

systems (Hamdan et al., 2021), we show deep-sea shipwrecks modify archaeal and 

bacterial sediment microbiomes in a uniform manner. This was revealed by elevated 

microbial diversity in proximity to the sites and a distinct bacterial and archaeal core 

microbiome.  

 

Unlike our earlier effort (Hamdan et al., 2021) which focused only on one shipwreck, 

Anona (included in this study), one domain, the current study includes 1432 samples 

from 9 shipwrecks of different hull types, sizes, at various water depths (144m to 

1950m). In the previous study, we observed a significant relationship between bacterial 

alpha diversity and proximity to the shipwreck Anona. A significant relationship was 
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observed here, even when samples were derived from different water depths, a 

significant structuring factor on microbiomes. Hull material (steel vs. wood) was included 

in PERMANOVA analyses and was a structuring factor for bacteria and archaea (Table 

S2) suggesting the physical or chemical composition of the shipwrecks may select for 

different taxa.  

 

The relationship between proximity and alpha diversity in sediments surrounding the 

shipwrecks was more pronounced for archaea than bacteria (Fig. 2). Archaeal 

communities formed a highly uniform core microbiome at all locations, regardless of 

environmental context (depth and hull type). Nearest to the shipwrecks, the core 

archaeal microbiome was more diverse and composed of heterotrophic taxa including 

Crenarchaeota; Bathyarchaeia and Asgardaeota; Lokiarchaeia and Euryarchaeota. The 

high contribution to the core microbiome of these taxa extended 200 m onto the 

seafloor, but declined at greater distances, replaced by seemingly ubiquitous 

Thaumarchaeota. This suggests a potential metabolic shift in communities surrounding 

the built habitat from dominant heterotrophy to chemolithoautotrophy. Bacterial core 

microbiome analysis also reveals increased core member diversity within 200 m of the 

sites. For bacteria, however, there was more variability in core microbiome membership 

among sites. Some ASVs, such as Bacteroidetes; Cytophagales were found in 

sediments closest to the shipwrecks at all sites, but with greater stochasticity near and 

distant from the wrecks, potentially due to local environmental conditions. The delivery 

of organic matter from riverine sources in particular may be a key determinant on what 

bacteria are found in near vs. offshore locations (Hampel et al., 2022).  
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Supervised learning was used to predict proximity to built features based on microbiome 

composition with strongest predictions based on archaeal ASVs at transect end 

members. These results suggest archaeal microbiomes surrounding built environments 

are distinguishable from background, respond to built habitats in a uniform, predictable 

way, and potentially could be a tool in detecting the influence of built habitats on 

seafloor ecosystems. Moreover, these data present a case that regionally dispersed 

core prokaryotic taxa characterize shipwreck influenced sediments differently than the 

surrounding seabed. The prediction of hull type was more accurate for bacteria than 

archaea potentially indicating built structure heterogeneity (age, size, hull material) may 

be more selective for bacteria than archaea. Likewise, as noted above, organic matter 

supply may differentially select core taxa from different domains. In deep sea, 

shipwrecks and associated biota may be the source of organic matter to the 

surrounding sediment core microbiome and sustain the microbial diversity (Hampel et 

al., 2022). Exploring differences between the domains may be critical to evaluating how 

built features interact with seafloor microbial biogeography.  

 

The processes that formed the seabed carved canyons and escarpments provided the 

physical and chemical setting for hydrocarbon seeps, vents, and brine pools to form. 

These geological features are joined by wood and other organic falls, coral reefs, and 

built structures. This has resulted in establishment of a heterogeneous seafloor 

containing features that offer specialized habitats. Habitat heterogeneity leads to 

specialized niches or island-like systems (Ramette & Tiedje, 2007). Natural habitat 
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features have been a focus of marine microbial biogeography studies of the shelf and 

slope for decades. The appearance of routinely associated taxa that differ from the 

surrounding sediment (Dick, 2019; Inagaki et al., 2006; Ruff et al., 2015) with specific 

functional attributes has been observed in hydrothermal vent and seep settings. In the 

Guaymas Basin, a core microbiome was attributed with the presence of cold seeps and 

hydrothermally vented sediments, resulting in highly specific, adapted and predictable 

communities (Cruaud et al., 2017). Similarly, globally dispersed methane seeps contain 

similar key taxa again pointing to a predictable composition of natural seabed habitats 

(Hamdan et al., 2013; Ruff et al., 2015). In another example, an analysis of deep-sea 

Lopheila pertusa reefs in the western Atlantic revealed highly conserved core 

microbiomes across regions, with geographically conserved symbiotic taxa observed 

(Kellogg et al., 2017).  

 

It is accepted that natural features form islands of biodiversity on the expansive seabed 

and attract genetically specialized populations (Schulze et al., 2020). It is also known 

that evolutionary processes, histories, and selective pressures drive diversification 

between site (Dombrowski et al., 2018; Moulana et al., 2020), and support biodiversity. 

Host association is also a key element differentiating microbiomes in habitats 

(Thompson et al., 2017). Based on current knowledge, natural features shape seafloor 

microbiomes in expected ways. The biogeographic patterns observed in aquatic and 

terrestrial environments are driven by a combination of physical, chemical and biological 

attributes (Hanson et al., 2019). Large scale meta-analyses show that natural systems 

exhibit predictability such that sample provenance can be attributed based on the 
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microbiome (Thompson et al., 2017). Our study is the first to show similar selective 

process occur at built habitat features. Unlike natural features, however, that have been 

present for decadal to geological time scales, built marine habitats are emerging at 

rapid rates, potentially altering dispersal between habitats. While the remains of historic 

shipwrecks can span the last 500 years, the majority of historic ones are 100 – 200 

years old (Damour et al., 2016), along with an unknown number of modern wrecks. It is 

important to consider these in context with other infrastructure. Since the 1980’s oil and 

gas infrastructure on the U.S. continental shelf and slope has expanded logarithmically 

(Bugnot et al., 2021).  While the shipwrecks under study here have similar effects on 

microbial diversity and community structure as natural features, the progressive addition 

of potentially 8000 more energy platforms in the Gulf of Mexico by 2028 (Bugnot et al., 

2021) could be impactful to the whole region. Ecological connectivity and built features 

have great potential to collide. It is unclear if the progressive addition of features will 

facilitate or impede movement of organisms, materials and energy across the seafloor 

(Bishop et al., 2017). Also, the connectivity of the seabed, if natural habitats are 

observed agnostic to the presence of built habitats, will remain unconstrained in the 

Anthropocene. This may represent an astonishing knowledge gap that impacts baseline 

studies across the shelf and slope. With the new knowledge from this study, that built 

features select specific microbiome members predictably, similar to natural analogs, we 

can begin to ask if they are bridges or barriers to genetic diversity, now and in the future 

when artificial features meet or exceed the number of natural habitats.  
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Figures and Tables 
 
Figure 1. 

 
Figure 1. Map of historic shipwrecks sampled in the northern Gulf of Mexico 
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Figure 2.  
 
 

 
 
Figure 2. Shannon Index diversity–distance plots for archaea (A) and bacteria (B) with polynomial 
regression. Spatial analysis of archaeal (n = 650) and bacterial (n = 762) diversity with distance and 
sediment depth for all shipwreck samples (C). Contours constructed from data from four transects 
aggregated on one axis. Grid created with the Kriging method applied to observed data 
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Figure 3.  

 
Figure 3. Core microbiome in sediments surrounding shipwrecks for archaea (left) and bacteria (right). Membership to the core was determined by 
presence in 80% of the samples.  
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Figure 4.  

 
Figure 4. Abundance heatmap of the most important taxa in each distance group derived from sample-
classifier Random Forest model for archaea (A) and bacteria (B). Distance groups are out of order as a 
result of the predicted output from the model. 
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